HYPERSONIC BOUNDARY-LAYER FLOW WITH
MASS TRANSFER ON POWER-LAW BODIES
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1. The need to investigate flow with mass transfer arises from the great influence of such flow on the
aerodynamic characteristics of a vehicle, and on heat transfer with the environment, For example, forced
blowing is an effective method of reducing convective and radiative heat transfer to an exposed surface. Mass
transfer can substantially alter the effective shape of a body, and influence both boundary layer separation
and the formation of secondary flows.

The investigation of mass transfer has been the subject of a large number of experimental and theoret-
ical studies. Reference [1], e.g., has reviewed investigation of the influence of forced blowing and suction on
the characteristics of the two-dimensional steady boundary layer on a permeable surface. An especially rel-
evant aspect at present is investigation of the influence of mass transfer on the three-dimensional flow ofa
viscous gas at hypersonic flight speeds [2, 3].

The present paper examines symmetric flow of a hypersonic viscous gas over a slender power-law body
with mass transfer., The coordinate system is rectangular (Fig, 1). The %Y axis is aligned along the velocity
vector of the incident flow U, The quantities u’, v!, w’ are components of the velocity vector in the bound-
ary layer, along the axes x°, y% z° respectively. On the body surface v® = F%x%, z%. The body shape is
given by the equation y° = 6&,()(0, z%). Taking into account that the flow considered is that over a slender body,
we can introduce variables [4], fixedon the body surface, y, =y’ — 6&7(x°, z%, v, = v’ - u'dsf /5x" —wﬂaagv/az".
In accordance with the usual estimate for the boundary layer in hypersonic flow [5], we introduce the dimen-
sionless variables
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where z, is the stretching which describes the ratio of the body dimensions in the transverse and longitudinal
directions; T, characteristic wing thickness; 6%, boundary layer displacement thickness; Re = po, U, L/ly,
Reynolds number; p_, gas density in the unperturbed stream; pg, viscosity, evaluated at the stagnation tem-
perature in the incident flow; L, characteristic longitudinal dimension, which emerges from the final result
in the similarity case; and g% stagnation enthalpy.

Substitution of the variables of Eq. (1,1) into the Navier —~Stokes equations and going to the limit Re — =
leads to the equations of the three-dimensional boundary layer having the form, in Dorodnitsyn variables,
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(1.2)
where ¢ is the Prandtl number, The boundary conditions take the form
u=w=0 v,=0F, g=gp A=0), u—>1, w0, g>1
(A = o0).

To evaluate the pressure we use the "tangent wedge" approximation [5] in a form valid for My (T +8) > 1,
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(1.3)
where X = 6/7 is the interaction parameter, describing the ratio of the boundary layer displacement thickness
to the wing thickness. :

We now consider flow over bodies of power-law shape zg = x™M, 0y = xlAy(z/20), where zg is the lead-
ing edge coordinate, and, following [6], we introduce the following variables:
z = z*, 2= zmz*, A = ¥, g = g*, p = p¥,

(1.4)

p = zB-bp* o = 220-Vp* y = u¥ w = w*, v, = 2"V¥,
8, = 2—2-VA,, n= (2l —m —2)/2, k= (2 + m — 2)/2.
In using Eq. (1.3) to determine the pressure, with no mass transfer through the permeable surface, as was

shown in [6], the interaction will be uniform over the body and the boundary-value problem of Eqgs, (1.2) and
(1.3) reduces to a similarity problem, if the parameters

m=1, 1 =3/4% (1.5)

However, with forced blowing (or suction) through the body surface, to reduce the problem to a similarity one,
one must also impose a restriction on the form of the function F so that v* at the body surface should be in-
" dependent of the coordinate x*, In that case we obtain
F = p-lAF*(z%Y},
) (1.6)
In the new variables of Eqs. (1.4) and (1,6), taking account of Eq, (1.5), the boundary-value problem of
Egs. (1.2) and (1.3) takes the form
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The boundary conditions have the form

u¥ = w* =0, v¥F =p*F* g% — g (¥ = (),

u* -1, w* -0, g¥ -1 (A* - o).

The system of equations obtained is independent of the coordinate x* and describes flow in the three«—dimen-;
sional boundary layer in the plane A%, z¥*,

In what follows we assume that the body shape in the transverse section is given by the expression
Ay = (1 — z%8)%,

We note that for the parameter oy = 3/4 at the edge of the body, we obtain conditions for moderate interac-
tion [5]. ‘

2. To solve the system of equations (1.7), it is convenient to introduce the new variables [6], independ-
ent of the unknown functions
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In addition, we must transform the components of the velocity vector in the boundary layer
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Substituting Eqgs, (2.1) and (2.2) into the system of equations (1.7), we obtain
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g¥=gp(Mm=0), u¥—>1{, v,—0. g¥>1 (n—>o0).

The system of boundary-layer equations, allowing for the viscous interaction, of Eq. (2.3), was solved
by a relaxation method [7], Depending on the sign of the coefficient [w, + zqw+(1 ~1/20Y) ] which determines
the direction of the parabolic nature of Eq, (2.3), we used right-hand or left-hand derivatives with respect to
the coordinate t.

To solve the system of equations (2.3), besides the boundary conditions at 7 =0 and =, we need con-
ditions on the leading edges of the wing, Taking into account that in the vicinity of the edge t = 0, for the dis-
placement thickness we have an expansion Ag(t) = Aekt3/ 24+ ,.. [5], we can obtain an expression for the
pressure
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(2.4)

Substituting Eq. (2.4) and dp*/dtl{—~, into the system of equations (2.3), and going to the limit t >0, for the
flow around the leading edge of the wing we obtain a system of ordinary differential equations, which was
solved by trial and error. I should be noted that near the leading edge the coefficient [w, + zyu*(1 —

t1 2011 which determines the direction of the parabolic feature, is positive for all values of 1, and the flow
in the boundary layer is directed from the leading edge to the wing axis,

In the present paper we consider symmetric flow over a wing, and there is therefore no need to calculate
from one leading edge of the wing to the other, and it is enough to solve the system of equations from the edge
to the wing plane of symmetry (t = 1) where the sink line occurs in this problem,

586



0,5 70,2 w
v, =0 T
T, ~ Vlﬂ_’\ g vw=0
~~IZ o1 YW 4 AN
_____ N N
R -
0 07 g,1 TS
17701 %
0t 0 3 t 0
1,0 0,5 t 0
Fig, 3 Fig., 4

To simplify the computations we assumed a linear dependence of viscosity on temperature w = 1, and
also ¥ = 1.4, o =0,71, The investigations of the influence of mass transfer on the boundary layer character-
istics carried out on a body with a sweepback angle of 45° (z, = 1), and a parameter governing the leading
edge shape of a4 = 3/4. The body surface temperature was assumed to be constant, gy = 0.5, and the inter-
action parameter, describing the ratio of the boundary layer displacement thickness to the wing thickness,

x =1

Figure 2 shows the results of calculating the boundary layer displacement thickness 4, and the pres-
sure p* for constant values over the wing span of the function v lw = 0.2; 0; —0.5; ~1 (curves 1-4, respec-
tively). The negative values of v! |y correspondto suction of the boundary layer throughthe wing surface, and posi-

tive values correspond to blowing, Suction of the boundary layer, as one would expect, leads to an appreciable
reduction in the boundary layer displacement thickness, which, in turn, leads to a reduced pressure, I is
important to note that the pressure not only becomes less in magnitude, but also that the positive pressure
gradient near the wing symmetry plane is considerably reduced, For the value v* lw = —1 it practically

becomes equal to zero., Numerical calculations have shown that with no mass transfer in the boundary layer
near the plane of symmetry there are reverse transverse flows which decrease with increase of the degree
of suction, and vanish completely for v lw = —1. But when there is blowing through the body surface, as can
be seen from Fig, 2, near the symmetry plane there is an increase, both in the displacement thickness and in
the pressure. The results of calculating the friction stresses in the longitudinal 7y = 8u*/87l, and trans-
verse Ty = awo/anlw directions, and also the heat flux Tg = Bg*/&n[w for a wing with variable blowing over
the wing span are given in Figs. 3 and 4.

The areas in which there is blowing of gas through the surface with v! lw = 0.1 correspondtothe shaded
parts of the curves, As can be seen from Fig. 3, variable blowing has an appreciable influence on the fric-
tion stress values 7y and the heat flux 7g, even at quite large distance from the point at which blowing be-
gins, denoted by the vertical lines, For example, with blowing gas and vilw = 0.1 in the region 0.4 =t =1
this influence appears up to values t = 0.31. Thus, the perturbation from blowing is propagated up the trans~
verse flow to a distance At = 0.09. It is interesting to note that the length of this perturbed zone is practically
independent of the coordinate where blowing begins (t = 0.4; 0.8), The influence of blowing on the friction
stress in the transverse direction Ty, (Fig, 4) is quite weak, and the blowing leads to a reduced value of Ty,
which, apparently, is due to the increase in the boundary layer displacement thickness,

The results of investigating the influence of variable gas suction through the body surface on the bound-
ary layer characteristics are shown in Figs, 5 and 6. The distribution of friction stress in the longitudinal
direction Ty = 8u*/9nly over the wing span with suction present is shown in Fig. 5, Areas in which there is
suction of gas through the surface with values vt lw = 0.1 correspondiothe broken parts ofthe curve, Inthe cal~
culations the areas with gas suction start at the point t = 0; 0,2; 0.4; 0.8, As in the blowing case, the pres-
ence of variable suction has an appreciable influence on the characteristics of flow in the boundary layer, at
a considerable distance from the point where blowing starts. Suction of the gas with values v! IW = =1 in the
region 0.4 =<t =1 begins to affect the functions 73 and Tg at the point t = 0.28, and, therefore, the pertur~
bations are propagated up the transverse flow to a distance At = 0,12, It should be noted that there is a sharp
increase in the heat fluxes and the friction stresses in the longitudinal direction near the beginning of the gas
suction region, Figure 6 shows the results of calculated friction stresses in the transverse direction over
the wing span Ty, = 8w,/ y,. Near the beginning of the suction region there is an appreciable increase in the
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friction stress Tyw. With suction of gas through the surface in the region 0.4 <t =1 the values of 0.3 =t =
0.47 increase by more than a factor of 7. The increase in velocity of the transverse flow in the vicinity at
which gas suction begins is explained by the fact that there is a change in the distribution of the boundary
layer displacement thickness, and there is an increase in‘the pressure gradient in the transverse direction,
It should be noted that when gas suction is present with values v Iw = —1 we have flow with a smooth inflow

to the wing symmetry plane and no reverse flow regions are formed.
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